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Abstract. We study two twedimensional Ising models with a non-Hamiltonian 
spin dynamics. The models consist of two sublattices at different temperatures. The 
steady state properties are investigated by means of Monte Carlo simulations on 
the Delft Ising System Processor. We find that the phase transition between the 
disordered and ordered phases persists when a temperature difference between the 
sublattices is introduced. The critical properties of these non-equilibrium systems fit 
well within the Ising universality class. 

Considerable knowledge exists about the critical properties of statistical mechanical 
models in equilibrium. One of the most important developments over the last two 
decades is our understanding that such properties fall into universality classes, to which 
widely distinct systems belong [l]. In comparison, much less is known about phase 
transitions in non-equilibrium systems. In particular, there is no reason to  expect that 
the critical properties of a system are unchanged, if indeed such a transition survives 
the introduction of non-Hamiltonian dynamics. 

Recently, Kanter and Fisher [2] gave specific examples of ferromagnetic systems, 
with Glauber [3] dynamics, in which a phase transition is absent. Prior to that, 
Grinstein el a1 [4] found that,  under certain conditions, the transition survives and 
argued that critical properties should fall into the Ising class. On another front, there 
are studies [5-81 of the lattice-gas representation of the Ising model with Kawasaki 
[9] dynamics, in which a homogeneous electric field is applied to establish a steady 
state with a non-zero current. If the (nearest-neighbour) interpa.rticle interaction is 
attractive, the (second-order) phase transition persists for all non-vanishing fields [ 5 ] ,  
but the critical behaviour has been concluded to lie outside the king universality 
class [6,7]. On the other hand, if the interaction is repulsive, the system does display 
Ising-like properties whenever the transition remains second order [8]. 

Other studies [10,11] of this model involve a dynamics which conserves energy 
rather than particle number. The non-equilibrium steady state is set up by a temper- 
ature difference between the opposing boundaries of the sample. As in  the previous 
examples, there is a non-zero global current, associated with internal energy. Most of 
the accurate data are gathered for systems far away from criticality. Little is known 
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about the critical properties, since both simulations and measurements are difficult to  
perform. 

In this paper, we report our studies on the same model with a non-Hamiltonian 
dynamics which is free from the constmints of a conservation law. Using Glauber 
[3] dynamics and the spin representation, we couple spins on two sublattices (i = 
1,2) of the square Ising system to thermal baths at different temperatures q. In 
comparison with the examples given above, the resulting non-equilibrium steady state 
has a different character. On a microscopic scale, there are no explicitly conserved 
quantities, There is a steady energy flow from one sublattice to the other. This flow 
does not correspond with a global current, i.e. on a macroscopic scale it has no vector 
but a scalar character. Also the average current associated with particle number 
(i.e. number of + spins) is zero. Thus the spatial inversion symmetry of the Ising 
model is not broken. Although the energy of our models is adequately described by 
a Hamiltonian, the transition probabilities are not consistent with a single reduced 
Hamiltonian; i.e. the dynamics can be clmracterised as non-Hamiltonian. Our data 
indicate that,  provided one of t8he T’s (say, T I )  is set below a certain value To, there 
is a second-order phase transition at, some value of T,. Further, the critical properties 
fall into the Ising universality class. 

Noteworthy are two other studies on the Ising model with two temperatures. One 
[12] employed the same model as ours with competing dynamics at  each site, i.e. each 
spin is coupled to both baths, but with probability p and 1 - p .  For temperature 
differences of 2%, no observa.ble devia.tions from equilibrium properties are seen. On 
the other hand, when this difference is ten times larger, no quantitative comparisons 
with the equilibrium case were given. The other study concerns the effects of a com- 
bination of Glauber and I<a,wasaki dyna.mics [13,14]. These models have transitions, 
and, for smdl  probability of the Ka.wasa.ki dynamics, no significant deviations from 
Ising-like behaviour were observed. For luge  probability of the Kawasaki dynamics, 
the transition was  found tso turn first order. 

The remainder of this paper is devoted to a brief description of our model and the 
results. We considered two types of sublattices on the square lattice: ‘checkerboard’ 
and ‘zebra’. (In the latter, every other column belongs to the same sublattice.) For 
simplicity, we studied a system with nearest-neighbour ferromagnetic interactions only. 
To specify a dynamics in a Monte Carlo simulation, we must define a procedure for 
choosing spins for updating and t>lie taransition probabilities for the chosen spin. For 
the latter, we adopt the t,ransition rakes according to Yang [15], i.e. a spin s on a site 
of sublattice i is assigned a value s(= f l )  with probability 

P( s) = exp( J sS/RT, ) / 2  cosh( J S /kT , )  

where S is the sum of the spin values of the four nearest neighbours. Note that P 
is not explicitly dependent on the previous value of that spin. For the former, we 
adopt a random site selection procedure. We should emphasise that the behaviour of 
the model will depend on this selection procedure. For instance, if the sublattice at 
the higher temperature is visited more frequently than the other sublattice, then the 
nearest-neighbour correlation function will be smaller than in our case. 

With these rules, the system is found to reach a steady state. We expect the 
stationary properties of t,he model t<o be functions of the parameters J / k q  only. We 
first discuss some special cases. 

(i) TI = T,. This is Onsager’s model. 



Non- equilibrium Isin.g m.odels 3801 

(ii) TI = CO. Even when T, is zero, the spins on sublattice 1 will be uncorrelated, 
and therefore correlations between spins on sublattice 2 will be severely limited. In 
particular, for the checkerboard model, they vanish for separations exceeding two 
lattice units. Similarly, spins on sublattice 2 of the zebra model are correlated only to 
those in the same or next columns. 

(iii) Tl = 0. In the checkerboard case, sites within a sublattice are not coupled to  
each other. Thus, we expect a disordered phase for large T,. The spins on sublattice 1 
will be only weakly correlated, counteracting the possibility of long-range order. The 
zebra case is less obvious, since all spins have two neighbours belonging to the same 
sublattice. Still, random fields due to the neighbouring spins at  a sufficiently high 
temperature T,, are sufficient to prevent a divergence of the correlation lengths in the 
chains of sublattice 1. Therefore we expect also in this case a disordered phase for 
sufficiently large T,. 

If we alter our model to include anisotropy, i.e. the vertical bonds being stronger 
than the horizontal ones, then each column in sublattice 1 will have a much stronger 
tendency to  order independently so t81iat we may expect global ordering for much larger 
values of T, in comparison with the isotropic case. 

For cases other tha,n these special ones, we have investigated these models by 
means of Monte Carlo simulations on the DISP (Delft Ising System Processor), a 
special-purpose computer for the simulation of Ising models [le, 171. Its spin updating 
algorithm is able to select sites randomly. The presence of two temperatures did not 
pose special problems because only transition probabilities need to be stored in the 
processor’s look-up table. While t8he DISP was originally designed for translationally 
invariant (over one lattice unit) models, the presence of two zebra sublattices could 
simply be accounted for by including one extra address bit, namely the least significant 
bit of the X coordinate of the spin, int’o the look-up-table address. In the checkerboard 
case, we took the modulo 2 sum of the least, significant bits of the X and Y coordinates 
instead. 

The simulations were performed at  three different temperature ratios CY E T,/T,, 
namely 1, 2 and m. We include the equilibrium case ( a  = 1, Onsager’s model) for 
purposes of comparison with the non-equilibrium results. The cases cy = CO were 
simulated by choosing J / k T ,  = 12 which excludes, after trunca.tion of the transition 
probabilities to the ma.chine precision, spin flips costing energy. We used square 
systems of N = L x L spins, with L = 8,10,32 and 64, with periodic boundaries. We 
present the data for the checkerboard systems with cr = 1, 2 and CO in some detail 
here. This is thought to  be sufficient, for a qualitative picture of our models. The data 
for the zebra systems are sufficiently similar a.nd we will only limit ourselves to some 
numerical data and comments at t,he end. 

Figures 1( a ) ,  ( b )  a.nd ( c )  show t,he quantit,y C, defined via the energy fluctuations 
of a system with size L as 

as a function of T. ,  with Q = 1, 2 and CO respect,ively. In (2) ,  E, is the energy, i.e. - J  
times the sum over the nearest-neighbour spin products. The data points represent 
runs up to 4 x lo6 sweeps. The energy (as well as other data) w a s  recorded at  intervals 
of twenty sweeps. 

For an equilibrium system, (2) is also the dimensionless specific heat, c z dU/dT, 
where U = (E,). For non-equilibrium systems, the fluctuation dissipation theorem 
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Figure 1. The quantity CL defined via the 
energy fluctuations (see text) of the a = 1 ( a ) ,  

board models. The data are shown as a func- 
tion of the temperature parameter kTzl.7, for 
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(0); L = 16 ( x ) ;  L = 32 (0); and L = 64 
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does not apply so that, i n  general, the two are not identical. A dramatic example was 
reported in the driven diffusive system with attractive interactions, where c diverges 
at  the transition while C remains finite [7]. By a numerical differentiation of the 
energy against temperature T, (for fixed ratio a = 1 and 2),  we obtain a 'specific 
heat' c = d(E)/dT,. Unfortunately, the results for c are less accurate than those for 
C. Nonlinearity of ( E )  near the critical point, imposes narrow temperature intervals 
for the numerical differentiation, leading to larger statistical errors. However, it is 
still clear from the data t,hat the quantities c and C behave very similarly; there 
appears to be an approximate linear relation. In particular we find again evidence 
for a logarithmic finite-size divergence of the maximum. For these reasons, we are 
encouraged to analyse our models using methods developed for equilibrium systems. 

Exact results for equilibrium Ising models show that the maximum in the specific 
heat scales as the logarithm of the system size L:  c E A + B log L.  This corresponds to 
a temperature exponent yt = 1, which is generally believed to  be a universal property 
of a large set of two-dimensional Ising models. This behaviour is clearly exhibited in 
figure 1( a ) :  the differences between subsequent maxima are approximately constant, 
while subsequent values of L differ by a constant factor 2. Remarkably, the non- 
equilibrium checkerboard systems display a very similar behaviour as shown in figures 
l ( b )  and (c) .  These data are strongly suggestive of a phase transition, with the 
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quantity C logarithmically diverging as a function of the system size. Note that the 
phase transition for a = 1x) (figure l ( c ) )  indeed occurs at a finite value of T2. 

During the simuhtions, 6he total magnetisation M was sampled also. Its fluctua- 
tions enable the calculation of the quantity 

For an equilibrium system, (3)  is also the magnetic susceptibility, x. The asymptotic 
finite-size dependence at the king critical point is 

for asymptotically large L ,  wit,h another universal exponent yh = 9 . Thus, at  a 
critical point, we expect 

Again, we emphasise that X, need not be related to x for non-equilibrium systems. 
However, we have numerically differentiated ML with respect to the magnetic field, 
and observed that the resulting susceptibility x L  was approximately proportional to 
X,, although the statistical errors were larger. 



3804 H W J Blote, J R Heringa, A Hoogland and R K P Zia 

, , 
1 . 0 - 9  $ 8 t ta )  (bl - 

Q 0 x o t  c x  
0 Ot D 0At :: XOf li 

oKlg %& 0 %po 
OOX 0.8- o x  
t 0 X  0 

Q -  o x  

0.8- 
0 + O x  

t 0 .  

+ + o  * 0 
X 0. 6- 0.6- t 

X 

+ o  X 
L 0 

0 t 
0 

t 0 -  0 4 -  0.4-  
t t 

, 

Data for R, against temperature are shown in figures 2 ( a ) ,  ( b )  and ( c ) ,  for CY = 1, 
2 and 00 respectively. The intersections of subsequent RL(T) curves yield estimates 
of the critical point and of yh. For ea.ch ratio CY we observe good agreement with the 
Ising exponent which corresponds with RL = '.l7I4 5y 3.364. Again, the non-equilibrium 
results fail to show any deviations from Ising universality. 

A third universal quantity [18] of critical Ising models is the large L limit of 
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which takes, according to Bruce [19], and Burkhardt and Derrida [20] the value Q, = 
0.856 for squa.re systems wit,h periodic boundaries. Intersections of the QL against 
temperature curves may thus serve as estimates of the critical points of the equilibrium 
models. Numerical results for QL are shown in figures 3 ( a ) ,  ( b )  and (c). These data 
show that the QL curves intersect, at one point, giving credibility to the presence and 
location of the critical points for the non-equilibrium models. More strikingly, the QL 
values at  the intersections for the Q # 1 models are consistent with that for Onsager's 
system. 

Figure 3. Ratios QL defhed via the mag- 
netisat,ion fluctuations (see text) of the a = 1 
( a ) , t h e a = 2 ( b ) , a n d t h e a = c e ( c ) c h e c k e r -  

tion of the temperature parameter kTZl.7, for 
board models. The data are shown as a func- 

four values of the finitesize parameter: L = 8 
(0);  L = 16 ( x ) ;  L = 32 (0); and L = 64 
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The results obtained for the zebra systems show a qualitatively similar behaviour. 
No obvious deviations from Ising ~niversalit~y are seen. For a closer examination, the 
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data for the checkerboard a.nd zebra systems are also subjected to various fitting pro- 
cedures. In particu1a.r we try to determine yt , yb , and &, more precisely. Expanding 
the finite-size scaling functions i n  T - T,, where T stands for one of the T,,  we expect 
the following behaviour near a critical point: 

Q L  = &, -t pL-Y' + u,(T - T,)Ly' + a,(T - T,) L 2yf  + ... 
c, = c, + log(L)L2y'-*[c0 + c,(T - T,)LY' + c,(T - TC)2L2Y' + ...I 
x, = x, + LQh--2[b0 + b,(T - TC)LY' + b,(T - T , ) W '  + ...I 

(7) 

(8) 

(9) 

where Q,, p ,  C,, X,, the ai, bi and the ci are (in principle) unknown parameters. The 
logarithmic factor was inserted in (8) in  order to avoid numerical problems associated 
with the divergence of the amplit#ude when yt approaches 1. The terms shown here 
were actually used during the least-squares fitting procedures: they were found to be 
the minimal sets leading t80 sat,isfactory residuals. For the irrelevant exponent yi in 
(7) we have chosen the 'ana,lytic' value -2. Since simultaneous determination of all 
unknowns leads to some loss of accuracy, we have used the following procedure. Since 
it is already known that yt = 1 from the foregoing, we have fixed yt = 1 in the formula 
for Q L  and solved for the remaining ~ n k n o w n ~ ,  including Q, and T, (see table 1). The 
results depend only weakly 011 this choice of y t .  Next, the results for T, were fixed in 
the expression for C,. The results for y, from subsequent fits (also shown in table 1) 
confirm the choice made above for yt . Finally, we have inserted these T, and yt results 
in the formula for XL and solved for yh (see table 1). We observe that the results for yt 
and yh lie close to universal Ising values. We conclude that there is strong numerical 
evidence tha.t our non-equilihrium systems belong to the universality class of the two- 
dimensional Ising model. The fact t,hat, t8he Q, results are also close to the known 
value for square, periodic Ising systems provides an additional consistency check for 
the checkerboard systems. Notme that. the situation for the zebra systems is somewhat 
different because the zebra pat,tern has a lower symmetry than the underlying square 
lattice. 

Table 1. Numerical resu1t.s for the crit,ical point, y t ,  y h ,  and QC, for three values of 
the temperat.iw ratio C Y .  Data are given for the 'checkerboard' (c) as well as for the 
'zebra' (z)  model, see first column. Estimated uncertainties in the last decimal places 
are given in parerit.heses. These clat,a agree well with known results for the equilibrium 
king model, namely the exact values yt = 1 and Y h  = y, and QC = 0.856 as found 
in [19,20] for square systems. The critical point obtained for the case Q = 1 lies close 
to the exact value log(1 + &)/2 = 0.440 69.. ,, 

Model a (J /kT2 )c Y t  Y h  Qc 
~~ 

C,Z 1.0 0.4408(3) 0.997(12) 1.874(3) 0.857(3) 
C 2.0 0.3362(4) 0.990(10) 1.876(4) 0.853(4) 
C cx 0.2954(2) 0.989(12) 1.875(3) 0.859(2) 
z 2.0 0.3303(4) 0.992(10) 1.876(4) 0.861(4) 
Z ix' 0.2714(3) 0.995(12) 1.872(3) 0.860(3) 

During the simulations, we made the additional observation that the spontaneous 
magnetisation of both sublattices as a function of temperature behaves quite similarly, 
but the amplitudes near the critical point, are obviously different when cx # 1. 

To obtain a qualitative understanding of the phase diagram, we apply the 'mean- 
field' approach. Thus we replace each interaction of a spin with a neighbour by a 
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contribution to  the effective magnetic field ( H ) ,  proportional to  the applicable sub- 
lattice magnetisation. Then one can use equilibrium methods on each individual spin, 
leading to independent sublattice magnetisations mi = tanh(H/kTi). Following the 
spirit of equilibrium mean-field theory, we find the self-consistent equations 

for the checkerboard model. These equations yield the critical line in the Tl - T, 
plane, (TIT, = [ 4 J / k I 2 )  as shown in figure 4 (bold curve). 

I . " 8 \ * ' 5 < I  
0 0 . 5  

I l k  Tz 

Figure 4. Phase diagram of the checkerboard (full curves) and zebra (broken line 
and curve) models. The bold lines represent the mean-field predictions for the crit- 
ical lines of these models (see text). Also shown are smooth curves (fine curves) 
interpolating between our Monte Carlo results at Tl/Tz = 1,2 and 03 which apply, 
by symmetry, also to 2'1 /T2 = 3 and 0. Disordered phases occur near the origin, and 
ordered phases on the ot,her side of the critical lines. 

In the zebra case, the self-consistent, equations are 

mi = tanh[25( 1 ~ 2 ~  + m 2 ) / k q ]  i = 1 , 2  (11) 

yielding J/kTl + J/kT, = 4 for t,he critticnl line. This result is also shown in figure 
4 (broken line), together with smooth curves connecting the numerical results for the 
checkerboard and the zebra models. Not surprisingly, the figure is symmetric in Tl and 
T,. There is some qualit,ative agreement between the mean-field and the numerical 
results except at  the ext,remes. From the data, we see that, when Tl = 0,  criticality 
occurs at  f i n i t e  critical values of T,. The 'mean-field' prediction is, unfortunately, 
infinity in the checkerboard case; in t,he zebra case it is even worse: the transition 
is predicted to  be absent.. As an ainusing contrast, we may use the temperature 
parameters Ki E J / l cT ,  a,nd compare t.his phase diagram with that of an equilibrium, 
an i s i i rop ic  Ising model. For the latt,er case, where Ki z J,/kT, the exact critical line 
is known: sinh 21C, sinh 2 K 2  = I .  Our cy = 2 data place a critical point surprisingly 
near this line. In this connection, we remark that the mean-field prediction for the 
anisotropic model ( I ( ,  + A', = $) also fares poorly at  the extremes, where the effects 
of fluctuations are too st,rong t d  be ignored. 



Non-equilibrium Ising models 3807 

Before closing, we point out a special case of our checkerboard system, for which it 
appears possible to find a mapping onto an equilibrium Ising model with an effective 
Hamiltonian consisting of strictly local interactions. This case is reminiscent of the 
fast rate limit of the driven diffusive lattice gas, introduced by van Beijeren and 
Schulman [21]. We change the dynamics such that sublattice 2 is visited much more 
frequently (infinitely more, in the limit) than sublattice 1. Now, we can express the 
probability distribution of a type-2 spin in the four surrounding type-1 spins. When 
the updating algorithm hits a type-1 spin, we are thus able to express the resulting 
probability distribution of that spin in a 3 x 3 block of type-1 spins. This means 
that the stationary set of configurations of sublattice 1 is generated by an effective 
Hamiltonian with only short-range interactions. Thus, we should expect also this 
special case to display the universal Ising critical properties. 

In conclusion, we have performed Monte Carlo simulations on Ising models out 
of equilibrium. These systems are without uniform, global currents, and have a spin 
dynamics without a local conservation law. The steady state energy currents are 
all local, i.e. they flow from one sublattice to the other. Our results provide strong 
evidence that the models belong to the universality class of the equilibrium Ising 
model. At first sight, this conclusion appears to support the results of Grinstein et 
a1 [4]. On closer examination, however, our dynamics does not satisfy some of the 
restrictions it imposed, e.g. homogeneity of the transition probabilities. It may be 
possible to generalise their arguments and enlarge the Ising class. In any case, much 
work will be needed before we can answer the most intriguing question, namely, is the 
existence of a symmetry-breaking global current density a necessary (though perhaps 
not a sufficient) condition for critical properties of non-equilibrium phase transitions 
to fall outside the universality class of their equilibrium counterparts? 

Acknowledgments 

We are indebted to J M J van Leeuwen, H van Beijeren, H J Hilhorst, J L Lebowitz and 
B Schmittmann for valuable discussions. The hospitality of J M J van Leeuwen and 
the Lorentz Institute at  Leiden, where some of this work was performed, is gratefully 
acknowledged. We thank A Compagner for essential contributions to the performance 
of the DISP. This research is supported in part by the US National Science Foundation 
through the division of materials resea.rch. 

References 

[l] 
[2] 
[3] 
[4] 
(51 
[6] 

Kadanoff L P 1971 Critical Phenomena ed M S Green (New York: Academic) 
Kanter I and Fisher D S 1989 Phys. Rev. A 40 5327 
Glauber R J 1963 J .  Math. Phys. 4 294 
Grinstein G, J a y a p r a b h  C and He Y 1985 Phys. Rev. Lett. 55  2527 
Katz S, Lebowitz J L and Spohn H 1983 Phys. Rev. B 28 1655; 1984 J .  Stat. Phys. 34 497 
Janssen H K and Schmittmann B 1986 Z. Phys. B G4 503 
Leung K-t and Cardy J L 1986 J. Stat. Phys. 44 567 
Gawadzki K and Kupiainen A 1986 Nucl.  Phys. B 269 45 
Valles J L and Marro J 1987 J .  Stat. Phys. 49 89 
Leung K T, Schmittmann B and Zia R I< P 1989 Phys. Rev. Lett. 62 1772 
Kawasaki K 1972 Phase Transitions and Critical Phenomena vol 2, ed C Domb and M S Green 

[7] 
[8) 
[9] 

(New York: Academic) 



3808 H W J Bloie, J R Heringa,  A Hoogland a n d  R h ' P  Zia 

Creutz M 1986 Ann.  Phys., N1' 167 62 
Harris R and Grant, M 1988 Phys. Rev. B 38 9323 
Garrido P L, Labarta A and Marro J 1987 J .  Slat. Phys. 49 551 
Gonzalez-Miranda J M, Garrido P L, Marro J and Lebowitz J L 1987 Phys. Rev. Lett. 59 1934 
Wang J S and Lebowitz J L 1988 J .  Stat. Phys. 5 1  893 
Garrido P L, Marro J and Gonzalez-Miranda J M 1989 Phys. Rev. A 40 5802 
Yang C P 1963 Proc. Symp. A p p l .  Math. 15 351 
Hoogland A, Spaa J, Selman B and Compagner A 1983 J .  Comput. Phys. 5 1  250 
Hoogland A, Compagner A and Blote H W J 1988 Special Purpose Computers (Computational 

Binder K 1981 Z. Phys. B 43 119 
Bruce A D 1985 J .  Phys. A :  Math. Gen. 18 L873 
Burkhardt T W and Derrida B 19S5 Phys. Rev. B 32 7273 
van Beijeren H and Schulinan L S 198.1 Phys. Rev. L e t t .  53 806 

Techniques 5 )  ed B J Alder (New York: Academic) 


